Data Access Update

Jeff Hill

What is This — An Interface

« A plug-compatible interface
= Introspecting arbitrarily: complex data

= Data Exporter
« Intimately familiar with proprietary data

« Facilitating access from generic programs
= Providing functions conforming to the interface

=« Data Client
* A generic consumer of data
* No preconceiving knowledge of the data

* Intrespects the data
= Calling functions in the interface

What is This — A Support Library

« A support lisrary

= Equivalence and copy: operator for dissimilar
data sets

* Leveraging the well defined! interface

Wiy We Need It — Expandedi Vieta
Data

Current EPICS has a fixed set off meta-data
= [his obvieusly needs to expand
s EPICS base developers don't anticipate

« Alllpessible meta-data
« Alllpessible meta-data permutations

= Application developers define new meta-data
' Expansion of toolset will hopefully accelerate

Decentralized development requires proper decoupling of
compoenents, fiom each other

= Changes in one component do not cause another component to break
Data Access Is about expanding this set while keeping the tools
properly decoupled

= [f'the meta-dataiis expanded in a data source

« We need not rewrite all of the clients of that source
« Support library efficiently extracts a subset

Wiy WerNeedl It — Multi-Parameter
Synehronization

« 'In multi-agent systems synchronization Is a
feoccurring theme

« Current EPICS synchronizes single parameter
with a fixed set ofi meta data

« Data Access Is about synchronizing arbitrary
application defined data capsules with

« lime (a time stamp)

= An arbitrary (application defined) event
« RF arc-down event etc (data acquisition)

= A client’s read or write request
« Synchronized multi-channel read / write

Wiy We Need! It — Device
Orientation

«Intelligent instruments; are the norm

* Intelligent devices require message
pPassing
= [Essential for tool based approach to devices

* [Devices must defined arbitrary request /
response capsules

= Data Access interfaces this arbitrary data
capsule

Wiy We Need! It — Device
Orientation

« Device record

= Goalt
« Device level abstractions w/o writing low: level code

= llAree components

* Interface

» What multi-parametermessages are accepted and what multi-
parameter respoenses are sent

s What events are posted containing what properties

« Behavior
s Probably state notation language

« Data
s Probably other records

= New features in iocCore’s dbCommon

General Design Philosophy

« User isn't required: to store his data in a
particular format

« Nevertheless, knowledge of the structure
of the data determined at compile time

s Access to the data can be efficient.

General Design Philosophy

« Jrhrsiisi not office computing

« Designed for use In limited memory.
embedded systems

« [Data Access Interface must not preclude
User data stored! in multiple non-
contiguous blocks

= Free lists based memory allocation
* Low latency
* No fragmentation
* Predictable behavior

General Design Philosophy

« [Datal Access Interface must not require C-
RIC general purpoese memaory
management AKA malloc

» [Passing data via data access in high
throughput situation
« Efficiency gets noticed

« Data access interface to application data lifetime is
duration of a function call
= Malloc is a very high overhead call in this context

Interface Details - Properties

« AlllExported Data Assigned a Property Name

I) 14

= Weight™, “units’™, “maximum’
« Any name that'a group of pregrams mutually agree upon

= Preperties may have subordinate properties

« “value" property
= Units” subordinate property.
» highlimit™ subordinate property.
» low limit® subordinate property.

* Property 1d’s are stored in type daPropertyld

= Class constructor requires a property name string

Interiace: Details — Whriting a Data
EXporter

« Data Exporter derives from class
dabata

* This means nothing more or less than
= 4 functions provided by the Data Exporter

« T'raverse, writeable
* [raverse, readable
* Find, readable

* Eind Writable

= ['hese functions are called by the Data Client
wheni It introspects the data

Interiace Detalls— Wiriting a
llraverse Function

« [Data Exporter’s traverse function has one
Incoming argument
= [Reference to data publishing adaptor

+ [Datal Exporter calls a function in this

adaptor for eachiexported property

« Adaptor has overloaded functions
= One for each primitive type

* No write access — readAdaptor::reveal called
* Write access — writeAdaptor:.expose called

Interiace Details — Writing| a
Traverse Function

void myData::traverse (readAdaptor &adt) const

{

adt.
adt.
adt.
adt.

reveal
reveal
reveal
reveal

(propertyHighDisplayLimit, data.hdl);
(propertyLowDisplayLimit, data.ldl);
(propertyWeight, data.weight);

(propertyHeight, data.height);

Interiace Detalls— Wiriting a

Eind Eunction

« Called by Data Client

= 10 Index a property: by its property identifier
« Compared to the traversal mechanism ...
= Additional flexibility.

= Some well bounded loss of runtime efficiency
« [Data Exporter’s find function Is passed a
data publishing adaptor and a property id

= Choice of Indexing method left to exporter
* Prototype Iin support libraries

Interface Detallsi— Wiiting a Find
FUnRction

void myData::find (
const daPropertyId & id, readAdaptor & adt) const
{
// efficent approach for when there
// are more properties implenmented in
// support libraries
if (1id == propertyHighDisplayLimit) {
adt.reveal (id , data.hdl);
}
else if (id == propertyLowDisplayLimit) {
adt.reveal (id , data.hdl);
}

Interface details — Subordinate
[Prioperties

« |[IFthere are suboerdinate properties

= the reveal /' expose function are supplied with
an optional 3™ argument

= A reference to type dabata

« Recall that the Data Exporter derives from
class dabata

= This 3" argument references a Data Exporter
for the subordinate properties

Interiace Details — Writing| an Array.
Data EXporter

Array Data Exporters derive from class
daArray

TThis means nothing more or less than
= & functions provided by the Array Data Exporter

« Trraverse array, writeable & readable versions

* Traverse multidimensional anray slice, writeable & readable
Versions

« Number of dimensions, get & set versions
« Dimension bound, get & set versions

= I'hese functions are called by the Data Client when it
iIntrospects array data

One of the overloaded functions in the scalar

publishing adaptors has type daArray

Interiace Details — Writing| an Array.
Iraverse Function

void myArrayData::traverse (readArrayAdaptor &adt) const
{

// arrays may be stored in non-contiguos blocks

// multidimensional arrays are revealed in

//

// multidimensional arrays revealed in row-major

// order followinhg convention for the C language

//

adt.reveal (propertyValue, data.arrayChunkO, 256);

adt.reveal (propertyValue, data.arrayChunkl, 256);

Interface Detalls — Enumerated
TVpEs

« | String Exporter dernives from| class daEnum

| Exporter supplies these functions
= Get number of states
Tiraverse states
Conyvert state string to int

Conyvert int to state string
State is valid test

Remove state, set string for state

‘ Any primitive type convertible to C type “int” may store
the state

* One ofi the overloaded function in the publishing
adaptors has type daEnum

Interiace Detaills = Strings

« Viere complicated than expected!

« I SOME requirements

= No raw access to the character string
« Strings may be stored'in non—contiguous blocks
= Many C-RTL things such as scanf don't like this
= [he class std::string doesn’t allow this
String| exporter must not be forced to call malloc in' its constructor
* Most std::streambuf implementations do
* Most std::string implementations do

Support for wide strings Is desirable

Don’t pass off string to numeric conversion to the string storage
implementation?

« \Want consistent approach when converting strings to numbers

« Many numeric types — best to avoid a fat interface

Interiace Detaills = Strings

« String Exporter derives from class daStringlO

* Exporter supplies these functions
= Get a character — unsigned int passed out
= PUt a character — unsigned int passed In

= Puti string — daStringlOrreference passed in
« Facilitates high speed copy.

= Get std::locale reference

« One of the overloaded functions in the scalar
publishing adaptors has type daString

Interface Details - Thime Stamps

« [Dataaceess design philesophy.
= Don't stipulate the primitive storage type
*« epicslime! Is versatile, but should not be stipulated
« Ilherefore, we need a dalime interface
that time stamp exporters derive from

Ereguently Asked Questions

« Whoea, this thing Is called Data Access!

= Don't O.0. systems use messages and
remote procedure calls?
« Public data Is anathema

« Data Access was Iinvented for the

purpose of passing messages
= [0 specify the parameters of the messages,

and map between dissimilar messages

Ereguently Asked Questions

« Why not use a conventional RPC system like CORBA?

Issues withi RPC based distributed architecture

= CORBA is a low level system
*: Unconstrained use could lead to spaghetti distributed arnchitecture
= Connection management (lack thereof)

Difficulty predicting system degradation if one node is lost
System startup chicken and egg problems
Proper integration into embedded and preemptive scheduled OS
Proper system degradation under load
Memory management in embedded systems
= Vendor uniformity and lifetime

Streaming message transport systems

= [This is different from conventional RPC systems
RPCs typically require a network round trip for each message

= This is what makes high throughput possible

Alternative Approach

« Why not use a data description compliler like IDL
o XIDR?.

« Thisi Is certainly worthy ofi consideration, but ...

Proper decoupling of sender and receiver data spaces appears to be
important for a tool based approach
Conventional data description compiler based systems require interfaces of
the sender and receiver be identical

Parameter-for-parameter, field-for-field, bit-for-bit

Sender and Receiver must have the same repository ID

If not, no: communication
An event may have many associated properties

Clients will rarely need all of them, and there will be many permutated subsets

Commoen Misconceptions

This is a C++ template based interface
¥ In fact, pure virtual base class based interfaced

Y lemplates arerused only in the implementation of the
suUppert liorary

¥ Templates not seen by users

This Is a data object

¥ In fact, a universal interface to non-uniform data
* Proprietary data storage formats need not change
« \WWe are not designing a class that allocates space for,
enforces a storage format for data
= Memory isn't allocated by the library
* for arrays, strings, containers etc
= [hisisn't GDD or cdevData

Commoen Misconceptions

This interface: isn't compatible with; C, or

Java, python, ...

¥ C++ [Data Exporter can access data
maintained by C programs

Y All of the Interfaces described here could
have C, java, python ... wrappers

YA pure Java implementation could be written

¥iNo templates in Java, but when creating the
support lilbrary a program that creates a program
could be written as was done with GDD and its

ancestors

Recent Changes

Interface to arrays has been greatly simplified
= INo strides, chunks ete
= NoarrayXActionContext, arrayRequest
Propernty hierarchies - after careful thought
= Every property might petentially have subordinate properties

= Allews for preper evelution of structured data

« Ifit’s a scalar w/o limits today then it should not be forced to become a
container torhave limits tomorrow

String| converter class not passed into every reveal / expose function
» Enumerated types interfaced through class daEnum
» INot allf primitive types can be enumerated
« Must be convertible to primitive type “int”
Use of member templates

= Simplifies support libraries
* Reduces use of macros

Concllsion

e DatalAccess — a key. facilitator fer EPICS
Upgdrades ...
o Expandedimeta datal Set
o MUlt-paramELer syncnronization
e [Data AcqUisiuion
e DEvice Onientation

e 1100 based approdeh reguires properdecoupling ofi
tOPIS frompreach otier
@ chandes in one teel do Net cause another teol to break

o [here; are simple stepsiinvelved infwriting ai data
EXDOKLEN

